### 5.1.1 How Fast

## Mark scheme - How Fast

|  |  | Answer/Indicative content | Mark s | Guidance |
| :---: | :---: | :---: | :---: | :---: |
| 1 | i | To keep $\left[\mathrm{CH}_{3} \mathrm{OH}\right]$ (effectively) constant <br> OR <br> Zero order with respect to $\mathrm{CH}_{3} \mathrm{OH}$ <br> OR <br> To ensure equilibrium is far to the right $\checkmark$ | $\begin{gathered} 1 \\ (\mathrm{AO} \\ 3.3) \end{gathered}$ | ALLOW Change in $\left[\mathrm{CH}_{3} \mathrm{OH}\right]$ is negligible ALLOW rate is independent of $\left[\mathrm{CH}_{3} \mathrm{OH}\right]$ <br> IGNORE Methanol doesn't run out/is not limiting reagent. <br> Examiner's Comments <br> Most candidates used incorrect ideas about reaction going to completion or the methanol not being limiting. |
|  | ii | One half-life $t^{1 ⁄ 2}$ between 102 and 110 (mins) <br> Two half-lives calculated OR evidence on the graph of two half-lives <br> AND <br> constant half-life/values (means first order) $\checkmark$ | $\begin{gathered} 2 \\ (\mathrm{AO} \end{gathered}$ 3.1) <br> (AO <br> 3.1) | ALLOW any two combinations of positions, e.g. 5 and 2.5 AND 4 and 2 AND 3 and 1.5 <br> Examiner's Comments <br> Very few candidates were given full marks. Higherattaining students calculated one half life in range but very few could come up with a second half life as the graph did not allow another successive half life to be obtained. Higher-attaining candidates chose alternative half lives from the data given. <br> Misconception <br> Candidates are advised that half lives can be calculated from any numerical values on the graph. <br> Further guidance on rates of reaction can be found at: https:/www.ocr.org.uk/Images/371956-experiments-on-rates-of-reaction.doc |
|  | iii | Using gradients <br> Evidence of tangent at $t=0$ and intercept between $100-140(\min ) \checkmark$ <br> Correctly calculated gradient in the range of $2.9 \times$ $10^{-5} \text { to } 4.0 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~min}^{-1}\right) \checkmark$ <br> OR <br> Using half-life | $\begin{gathered} 2 \\ (\mathrm{AO} \\ 3.1 \times 1 \\ \text { ) } \\ \\ \\ \\ \text { (AO } \\ \begin{array}{c} \text { (AO } \end{array} \text { 2×1 } \\ \text { ) } \end{gathered}$ | ALLOW ECF from value of $t 1 / 2$ in (ii) <br> Examiner's Comments |

### 5.1.1 How Fast



## Level 3 (5-6 marks)

Most evidence used to determine the correct orders
AND rate equation AND rate constant.

There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.

## Level 2 (3-4 marks)

Some evidence used to determine two orders correctly
AND rate equation AND rate constant consistent with orders.
OR
Little evidence used to determine all three orders correctly
AND rate equation AND rate constant.

There is a line of reasoning presented with some structure. The information presented is in the most part relevant and supported by some evidence.

## Level 1 (1-2 marks)

Little evidence used to determine two orders correctly OR
One order correct, with attempt to determine the rate equation AND rate constant.

There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.

## 0 marks

No response or no response worthy of credit.

- 1st order wrt $\mathrm{CH}_{3} \mathrm{COCH}_{3}$


## Student 3

- 1 st order wrt $\mathrm{H}^{+}$


## Explanation

## Student 1

- constant gradient OR linear negative gradient OR constant rate OR rate independent of concentration OR decreasing half-life


## Student 2

- straight line through 0,0
- OR rate directly proportional to $\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]$ $\mathrm{OR}\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right] \times 2$, rate $\times 2$


## Student 3

- $\left[\mathrm{H}^{+}\right] \times 2$, rate $\times 2$


## Rate equation, rate constant and units

## Student 1

- rate $=k\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]\left[\mathrm{H}^{+}\right]$


## ALLOW rate $=k\left[\mathrm{Br}_{2}\right]^{0}\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]^{1}\left[\mathrm{H}^{+}\right]^{1}$

- 

$$
k=\frac{\text { rate }}{\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]\left[\mathrm{H}^{+}\right]} \quad \text { OR } \quad \frac{1.25 \times 10^{-5}}{1.6 \times 0.2}
$$

- $k=3.9 \ldots \times 10^{-5}$
- units: $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ (Any order, e.g. $\mathrm{mol}^{-1} \mathrm{dm}^{3}$ $\mathrm{s}^{-1}$ )


### 5.1.1 How Fast



### 5.1.1 How Fast

(

### 5.1.1 How Fast

|  |  |  | For $\mathrm{CH}_{3} \mathrm{CHOHCH}_{2} \mathrm{CHO}$, ALLOW $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ |  | This novel question linked together acid-base equilibria with a multi-step process. Many candidates completed an equation to generate acid-base pairs, which were then usually assigned correctly. The final equation was challenging but the highest ability candidates were able to combine together all the information with their earlier responses to arrive at the correct equation. See Exemplar 15. <br> Exemplar 15 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 1 | ALLOW correct structural OR displayed <br> OR skeletal formulae <br> OR a combination of above as long as unambiguous <br> For connectivity, <br>  <br> (Connectivity not being assessed) <br> Examiner's Comments <br> This part was one of the most challenging on the paper. <br> Candidates needed to link the earlier information for combining two ethanal molecules to derive the product for combining two propanone molecules. Despite the challenge, the highest ability candidates were able to come up with the correct structure. |
|  |  |  | Total | 6 |  |
| 4 | a | i |  <br> Gradient <br> Correct gradient calculated from best-fit straight line drawn within the range $\pm 800 \rightarrow \pm 1040 \checkmark$ | 3 | ALLOW lines which do not intercept y -axis |

### 5.1.1 How Fast

$E_{\mathrm{a}}$ calculation
$E_{\mathrm{a}}=(-)$ gradient $\times 8.314 \checkmark$
e.g. from $\pm 820, E_{a}=(+) 6817.48\left(\mathrm{~J} \mathrm{~mol}^{-1}\right)$
$E_{\mathrm{a}}$ to 3 SF AND use of $10^{-\mathrm{v} 3}$ for gradient $\checkmark$ e.g. from $\pm 820, E_{a}=(+) 6820\left(\mathrm{~J} \mathrm{~mol}^{-1}\right)$

ALLOW mark for gradient if correct working shown within $E_{\mathrm{a}}$ calculation without gradient being calculated separately
ALLOW $\pm 0.8$ (00) $\rightarrow \pm 1.04$ (0)
(omission of $10^{-3}$ )

ALLOW ECF for calculated gradient $\times 8.314$
If value of gradient not shown separately,
ALLOW $E_{a}$ in range: $6650 \rightarrow 8650$
OR $6.65 \rightarrow 8.65$ (omission of $10^{-3}$ )

## This mark subsumes gradient mark

## NOTE: Omission of $10^{-3}$ can get 1 st 2 marks

## Examiner's Comments

Higher ability candidates realised that the gradient was equivalent to $-E_{a} / R$ and determined a gradient within the range $\pm 800$ to $\pm 1040$, depending upon the line drawn. Credit was given to gradients of $\pm 0.800$ to $\pm 1.040$ resulting from calculations which omitted $10-3$ on the $x$ axis.

The negative gradient was multiplied by $R$ to determine $E_{a}$ with a value rounded to 3 significant figures.

Common errors were omission of $10^{-3}$ in the calculation which led to $E_{a}$ values between 6.65 and $8.65 \mathrm{~J} \mathrm{~mol}^{-1}$, or not rounding to 3 significant figures.

ALLOW $y=31.4$

ALLOW substitution of correct values of $\ln \mathrm{k}$ and $1 / \mathrm{T}$ into $\ln k=-E_{a} / R \times 1 / T+\ln A$ to give a value of $\ln A$ which approximately matches the intercept if given
$\ln A=\ln k+\left(E_{a} / R \times 1 / T\right)$

Calculation of $A=e^{\ln A}$
OR
$e^{\ln k+(E a / R \times 1 / T)}$

ALLOW ECF from incorrect $\ln A$
$\mathrm{e}^{31.2}=3.55 \times 1013$
$\mathrm{e}^{31.3}=3.92 \times 1013$
$\mathrm{e}^{31.35}=4.12 \times 1013$
$\mathrm{e}^{31.45}=4.56 \times 1013$
$\mathrm{e}^{31.5}=4.79 \times 1013$
$\mathrm{e}^{31.6}=5.29 \times 1013$
$\mathrm{e}^{31.7}=5.85 \times 1013$
$\mathrm{e}^{31.8}=6.46 \times 1013$
$\mathrm{e}^{31.9}=7.14 \times 1013$

### 5.1.1 How Fast



### 5.1.1 How Fast

Attempts to reach a simple conclusion for orders

## AND

Attempts a relevant rate equation.

There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant The working for the scientific content is clearly linked to the experimental evidence.

## 0 marks

No response or no response worthy of credit.
$\mathrm{Fe}^{3+}$ ions and $\mathrm{I}^{-}$ions, which were 1 and 2 respectively. Most candidates were then able to use this knowledge and further information from the table to determine the rate constant, including units ( $22.5 \mathrm{dm}^{6} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ ).

Many candidates appreciated that the mechanism involved a stoichiometric ratio of $1: 2$ with respect to $\mathrm{Fe}^{3+}$ ions and $\mathrm{I}^{-}$ions, but only the more able were able to suggest a suitable possible two step mechanism.

Common errors in proposing a mechanism included equations such as
$\mathrm{Fe}^{3+}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})+1 / 2 \mathrm{I}_{2}(\mathrm{aq})+\mathrm{I}-(\mathrm{aq})$ which gives a net ratio of $1: 1$ for the reactants.
or
$\mathrm{Fe}^{3+}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq})+\mathrm{e}^{-}$which although introducing a correct ratio of reactants also introduces a 'floating' electron which in all reality would have attached itself to one of the product species.

In questions such as 17a where the quality of extended responses is assessed candidates need to be aware of the need for explanation of their answers. For instance, just giving a correct order of a species in the rate equation is not as strong an answer as one which explains how altering, say doubling, the concentration of a reactant effects the overall rate of reaction, leading to determination of the order.

## Exemplar 1

### 5.1.1 How Fast

|  |  |  |  | (a)* Determine the rate constant and a possible two-step mechanism for this reaction that are consistent with these results. Existont with these results. <br>  <br>  <br>  <br>  $\qquad$ $\qquad$ $\qquad$ $\qquad$ $\qquad$ $\qquad$ $\qquad$ $\qquad$ $\qquad$ <br> This exemplifies how a concise response can gain full marks on a Level of Response question. The candidate has clearly identified which data they have referred to in the table, and explained the conclusions that can be drawn. The rate equation is then clearly shown, along with subsequent working to determine the value of the rate constant. Finally, the suggested mechanism is given, along with an indication of which is the slow step. The line breaks clearly identify each stage in the response, and it fully satisfies the level 3 criteria in the mark scheme. |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Total | 11 |  |
| 5 | a | Measure mass (loss) $\checkmark$ | 1 | ALLOW weight for mass <br> ALLOW take samples and titrate (remaining $\mathrm{H}_{2} \mathrm{O}_{2}$ ) <br> Examiner's Comments <br> The idea of measuring mass loss (over time) was frequently given as a correct response. The idea of titrating samples to determine the concentration of hydrogen peroxide during the course of the reaction was occasionally seen and given credit. |
|  | b | Please refer to the marking instructions on page 5 of mark scheme for guidance on marking this question. <br> Level 3 (5-6 marks) <br> A comprehensive conclusion using quantitative data from the graph to correctly determine initial rate AND half lives / gradient with 1st order conclusion for $\mathrm{H}_{2} \mathrm{O}_{2}$ AND determination of $k$. <br> There is a well-developed line of reasoning which is clear and logically structured. <br> Clear working for initial rate, half life / gradient and order and $k$. <br> Units mostly correct throughout. | 6 | Indicative scientific points may include: <br> Initial rate <br> - Tangent shown on graph as line at $\mathrm{t}=0 \mathrm{~s}$ <br> - Gradient determined in range: 1.5-2.0 $\times 10^{-3}$ e.g. $\frac{2.3}{1300}=1.77 \times 10^{-3}$ <br> - initial rate as gradient value with units: $\mathrm{mol} \mathrm{dm}^{-3}$ $\mathrm{s}^{-1}$, <br> For other methods contact TL |

### 5.1.1 How Fast

## Level 2 (3-4 marks)

Attempts to describe all three scientific points but explanations may be incomplete.
OR Explains two scientific points thoroughly with few omissions.

There is a line of reasoning with some structure and supported by some evidence. The scientific points are supported by evidence from the graph.

## Level 1 (1-2 marks)

Reaches a simple conclusion using at least one piece of quantitative data from the graph.
Attempts to calculate initial rate OR half life.

There is an attempt at a logical structure with a reasoned conclusion from the evidence.

0 marks No response worthy of credit.
e.g. $c=2.3 \mathrm{~mol} \mathrm{dm}^{-3}$,

AND $c=1.15 \mathrm{~mol} \mathrm{dm}^{-3}$,
gradient $=1.6 \times 10^{-3}$
gradient $=0.8 \times 10^{-3}$

- For chosen method, conclusion: $\mathrm{H}_{2} \mathrm{O}_{2}$ is 1 st order


## Determination of $\boldsymbol{k}$

2 methods

- $\quad k$ clearly linked to rate $\mathbf{O R}$ half-life:

$$
k=\frac{\text { rate }}{\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]} \quad \text { e.g. } k=\frac{1.6 \times 10^{-3}}{2.3}=7 \times 1
$$

$\mathrm{s}^{-1}$
OR $k=\frac{\ln 2}{t_{1 / 2}} \quad$ e.g. $k=\frac{0.693}{950} \quad=7.3 \times 10^{-4} s$

## Examiner's Comments

This was the first of the two extended response questions in which the candidates had to determine three values based initially upon the graph. Some of the workings on the graph were a little hard to follow.

Many candidates scored highly on this question, showing a good understanding of the chemistry involved. Weaker candidates sometimes struggled to express the link between the different values being calculated and were awarded a lower level mark.

ALLOW 0.69(0) dm ${ }^{3}$
$2^{\text {nd }}$ mark subsumes $1^{\text {st }}$ mark
ALLOW $1000 \mathrm{~cm}^{3} / 1 \mathrm{dm}^{3}$ syringe

### 5.1.1 How Fast


### 5.1.1 How Fast



### 5.1.1 How Fast

| c | i |  <br> Axes labelled with units AND linear scales AND at least half of the graph paper used $\checkmark$ <br> Points correctly plotted $\checkmark$ <br> Best fit straight line $\checkmark$ | 3 | Each point must be within one small square on graph paper of value in table |
| :---: | :---: | :---: | :---: | :---: |
|  | ii | $\text { Order }=0$ <br> Straight line graph shows rate is constant throughout OR rate does not depend on $\left[\mathrm{I}_{2}\right] \checkmark$ | 2 |  |
| d |  | Step 1: <br> Step 3: | 2 | ALLOW correct molecular, structural OR skeletal OR displayed formula OR mixture of the above as long as non-ambiguous |
|  |  | Total | 10 |  |

### 5.1.1 How Fast



### 5.1.1 How Fast



### 5.1.1 How Fast

(

### 5.1.1 How Fast

|  |  |  |  | ALLOW $2 \mathrm{H}^{+}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$ $\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$ <br> Examiner's Comments <br> This question assessed different aspects of reaction rates, based around the reaction of hydrogen peroxide with hydrogen and iodide ions. <br> This part was attempted very well, the majority identifying that the reactants of the rate-determining step (Step 1) are obtained from the rate equation. Various possible equations were allowed for the remaining steps. Some otherwise correct equations could not be credited as charges had been omitted. Candidates are advised to check that charges, as well as species, balance on each side of any equation. |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Total | 11 |  |
| 1 | a | NOTE: First 3 marks are ONLY available from an expression using [ NO$]^{2}$ <br> Units are marked independently <br> Using values ON THE CURVE in CORRECT expression 1 mark <br> Use of any two correct values for rate and [NO] from graph e.g. for $5.0 \times 10^{-4}$ and $4.2 \times 10^{-4}$, $k=\frac{6.0 \times 10^{-4}}{\left(2.0 \times 10^{-2}\right) \times\left(6.0 \times 10^{-4}\right)^{2}}$ <br> OR $4.2 \times 10^{-4}=k\left(2.0 \times 10^{-2}\right) \times\left(5.0 \times 10^{-4}\right)^{2} \checkmark$ <br> Calculation of $\boldsymbol{k} 2$ marks <br> FOR 1 MARK <br> $k$ calculated correctly from values obtained from graph <br> BUT NOT in standard form AND / OR more than 2 SF <br> e.g. $k=\frac{6.0 \times 10^{-4}}{\left(2.0 \times 10^{-2}\right) \times\left(6.0 \times 10^{-4}\right)^{2}}=83333.33$ <br> OR FOR 2 MARKS <br> $k$ calculated correctly from values obtained from graph <br> AND in standard form AND TO 2 SF e.g. $k=83333.33$ gives $8.3 \times 10^{4} \checkmark$ | 4 | Note: rate and [ NO ] are any correct pair of readings from the graph, <br> The [NO] below are the most commonly seen. <br> For these [NO] values, these are the ONLY rates allowed <br> IF OTHER values are given, mark using the same principle. If any doubt, contact TL. <br> NOTE: IGNORE any numbers used from tangents <br> SPECIAL CASES that ALLOW ECF for calculation of $k$ from ONLY ONE of the following (2 marks) <br> 1. Powers of 10 incorrect or absent in initial $k$ expression <br> 2. $\left[\mathrm{H}_{2}\right]^{2}[\mathrm{NO}]$ used instead of $\left[\mathrm{H}_{2}\right][\mathrm{NO}]^{2}$. <br> 3. Any value within $\pm 0.2$ of actual values from graph <br> ALLOW units in any order, e.g. $\mathrm{mol}^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1}$ <br> Examiner's Comments <br> This part required candidates to calculate a rate constant from a rate-concentration graph and a rate equation. Most candidates were able to obtain correct values from the rate-concentration graph, with a tolerance of $\pm 0.1$ allowed, and to calculate a value for the rate constant; three or four marks were common. |

### 5.1.1 How Fast



### 5.1.1 How Fast

|  |  |  | Half life is constant $\checkmark$ | 2 | IGNORE 'regular' half life (not necessarily the same) <br> Examiner's Comments <br> This part was answered extremely well, with the expected downward slope and a comment about a constant half-life. Comparatively few incorrectly shaped lines were seen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | d i | i | $\mathrm{H}_{2}+\mathrm{N}_{2} \mathrm{O} \rightarrow \mathrm{N}_{2}+\mathrm{H}_{2} \mathrm{O} \checkmark$ | 1 | ONLY correct answer <br> DO NOT ALLOW multiples <br> Examiner's Comments <br> Most candidates were aware that the equations for the three steps must add to give the overall equation and the majority of candidates obtained the correct equation. |
|  |  | ii | Steps 1 AND Step 2 together give $2 \mathrm{NO}+\mathrm{H}_{2} \checkmark$ | 1 | ALLOW Step 1 AND Step 2 together give species in same ratio as in rate equation <br> ALLOW rate-determining step / slow step for Step 2 <br> ALLOW $\mathrm{H}_{2}$ reacts with $\mathrm{N}_{2} \mathrm{O}_{2}$ which is formed from 2 NO <br> NOTE: The response must link Step 1 with Step 2 Steps can be referenced from the species in each step <br> Examiner's Comments <br> Candidates found this part far more difficult. Most were clearly expecting to answer in terms of the species in the slow step being present in the rate equation and many responded in this way. This strategy will only work if the slow step is also the first step. Only the best candidates were able to interpret the data, explaining that $\mathrm{N}_{2} \mathrm{O}_{2}$ in the slow step had been formed from 2NO in the preceding fast step. |
|  |  |  | Total | 11 |  |
| $1$ | a | i | 5 OR 5th (order) $\checkmark$ | 1 | Examiner's Comments <br> This part was almost universally correct. |
|  |  | ii | (stoichiometry in) rate equation does not match (stoichiometry) in overall equation $\checkmark$ <br> Collision unlikely with more than 2 ions / species / particles $\checkmark$ | 2 | ALLOW moles / ions / species / particles / molecules / atoms throughout (i.e. emphasis on particles) <br> IGNORE more reactants in overall equation <br> If number of species is stated, ALLOW 3-5 only (rate equation contains 5 ions) <br> DO NOT ALLOW negative ions would repel |

### 5.1.1 How Fast

|  |  |  |  | (there is a mixture of positive and negative ions) <br> IGNORE more than two reactants collide <br> (not related to rate equation) <br> Examiner's Comments <br> Able candidates were often able to suggest one of the two acceptable reasons in the mark scheme: different coefficients in the rate and overall equation or the unlikelihood of more than 2 species colliding. Although the reacting species were all ions, the examiners did allow various terms provided that they were indicative of particles. Reactants was not allowed as the reactants in the two equations were the same and collisions are specific to particles. |
| :---: | :---: | :---: | :---: | :---: |
|  | b |  <br> Straight upward line <br> AND | 2 | ALLOW lines starting close to 0,0 <br> ALLOW 2nd order line with 'straight' section early or late as long as an upward curve is seen between. <br> Examiner's Comments <br> It was common to see correct lines for both graphs. Incorrect sketches often showed curves reminiscent of a half life relationship of an inverse 2nd order curve. |
|  | c i | $\begin{aligned} & 5.4(0) \checkmark \\ & 614.4(0) \checkmark \end{aligned}$ | 2 | IGNORE sign <br> ALLOW 614 OR 610 <br> Examiner's Comments <br> Able candidate usually obtained both marks but average and weaker candidates often experienced problems, particularly with the rate for Experiment 3. The |

### 5.1.1 How Fast



### 5.1.1 How Fast

|  |  |  | Actual value will depend on amount of acceptable rounding in steps and whether figures kept in calculator even if rounding is written down. <br> ALLOW any value in range given above. |  | $\left[\mathrm{H}^{+}\right]=3.56 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}$ <br> and rate $=1.91 \times 10^{-8}$ OR $1.9 \times 10^{-8}$ by ECF <br> Examiner's Comments <br> This question linked two areas of the specification, pH calculations of weak acids with reaction rates. Overall candidates coped admirably with the challenge and most calculated the $\left[\mathrm{H}^{+}\right]$successfully. Weaker candidates often made no further progress but many candidates then moved forwards to correctly calculate the initial rate. The examiners used the candidate answer from 4(c)(ii) for ECF purposes. <br> Because of the range of possible intermediate roundings in this calculation, a generous range of values was allowed for the initial rate. <br> Answer: $5.3310^{-3}$ to $5.3810^{-3} \mathrm{dm}^{12} \mathrm{~mol}^{-4} \mathrm{~s}^{-1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Total | 13 |  |
| 1 |  | i | $\begin{aligned} & \mathrm{N}_{2} \mathrm{O}_{4}=+4 \\ & \text { AND } \mathrm{NO}_{3}^{-}=+5 \\ & \text { AND } \mathrm{NH}_{4}^{+}=-3 \checkmark \end{aligned}$ | 1 | ALL 3 oxidation numbers required DO NOT ALLOW missing '+' or '-' <br> OR oxidation numbers shown as charges e.g. $\mathrm{N}^{5+}$ |
|  |  | ii | FIRST CHECK THE ANSWER ON THE ANSWER LINE <br> If answer = 7.9(0) (g) award 2 marks $n\left(\mathrm{KMnO}_{4}\right)=\frac{0.200 \times 250}{1000}=0.0500(\mathrm{~mol}) \checkmark$ $\text { mass of } \mathrm{KMnO}_{4}=0.0500 \times 158.0=7.9(0)(\mathrm{g}) \checkmark$ | 2 |  |
|  |  | iii | $\mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1} \checkmark$ | 1 |  |
|  |  | i | FIRST CHECK THE ANSWER ON THE ANSWER LINE <br> If answer $=1.54 \times 10^{23}$ award 2 marks $n(\text { tartaric acid })=\frac{38.25}{150}=0.255(\mathrm{~mol}) \checkmark$ $\begin{aligned} \text { number of molecules } & =0.255 \times 6.02 \times 10^{23} \\ & =1.54 \times 10^{23} \mathrm{l} \end{aligned}$ <br> (3 SF required from least significant data) | 2 | ALLOW ECF from $n$ (tartaric acid) <br> Common error: use of 148 (missing $2 H$ Structure) $\rightarrow 1.56 \times 10^{23}$ |
|  |  |  | Total | 6 |  |
| 1 <br> 3 | a |  | Measure reduction of colour of bromine | 1 |  |
|  | b |  | Measure volume of $\mathrm{CO}_{2}$ (produced) | 1 |  |
|  | c |  | Concentration of HCOOH would be constant | 1 |  |
|  | d |  | * Please refer to the marking instruction point 10 for guidance on how to mark this question. | 6 | Indicative scientific points may include:Initial rate |

### 5.1.1 How Fast

## Level 3 (5-6 marks)

A comprehensive conclusion which uses quantitative data from the graph to correctly identify and calculate initial rate AND half lives and reasoned order of $\mathrm{Br}_{2}$ AND determination of $k$ with units.

There is a well-developed conclusion showing a line of reasoning which is clear and logically structured. The working for initial rate, half life and order are clearly shown. Determination of $k$ is clear and correct.

## Level 2 (3-4 marks)

Reaches a sound, but not comprehensive, conclusion based on quantitative data from the graph. Correctly identifies and calculates initial rate AND half lives and reasoned order of $\mathrm{Br}_{2}$.

The conclusion has a line of reasoning presented with some structure. The initial rate and order is relevant and supported by correct evidence from the graph. There may be errors in the calculations which prevent the correct determination of $k$.

## Level 1 (1-2 marks)

Reaches a simple conclusion using at least one piece of quantitative data from the graph. Attempts calculation of initial rate OR half lives and reasoned order of $\mathrm{Br}_{2}$.

The information selected from the graph is basic and communicated in an unstructured way. The calculations may not be clear and the evidence used from the graph may not be clearly shown.

## 0 marks

No response or no response worthy of credit.

|  |  | No response or no response worthy of credit. |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Total | 9 |  |
|  | a | Please refer to the marking instruction point 10 for guidance on how to mark this question. <br> Level 3 (5-6 marks) <br> A comprehensive conclusion which uses quantitative results for determination of the reaction orders AND determination of $k$ with units AND proposes the two-step mechanisms. <br> There is a well-developed conclusion showing a line of reasoning which is clear and logically structured. The working for orders, rate equation, rate constant and twostep mechanism are clearly linked to the experimental evidence. <br> Level 2 (3-4 marks) <br> Reaches a sound, but not comprehensive, conclusion | 6 | Indicative scientific points may include: <br> Orders and rate equation <br> - $\mathrm{NO}_{2}$ and $\mathrm{O}_{3}$ both 1st order <br> OR rate $=k\left[\mathrm{O}_{3}\right]\left[\mathrm{NO}_{2}\right]$ <br> - Supported by experimental results <br> Calculation of $\boldsymbol{k}$, including units <br> - $k$ correctly calculated AND correct units, i.e. $k=$ $1.28 \times 10^{-2}$ <br> - $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ OR mol ${ }^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}$ <br> Two-step mechanism |

### 5.1.1 How Fast

|  |  | based on the quantitative results. <br> Correctly identifies the orders and rate equation AND calculates the rate constant with units OR proposes the two-step mechanism. <br> The conclusion has a line of reasoning presented with some structure. The working for orders, rate equation AND rate constant OR the two-step mechanism are linked to the experimental evidence. <br> Level 1 (1-2 marks) <br> Reaches a simple conclusion for orders AND rate equation. <br> The working for orders, and rate equation are linked to the experimental data, but the evidence may not be clearly shown. <br> 0 marks <br> No response or no response worthy of credit. |  | - Two steps add up to give overall equation <br> - Slow step / rate-determining step matches stoichiometry of rate equation. <br> e.g. $\mathrm{O}_{3}+\mathrm{NO}_{2} \rightarrow \mathrm{O}_{2}+\mathrm{NO}_{3}$ rate-determining step $\mathrm{NO}_{3}+\mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{5}$ <br> OR <br> $\mathrm{O}_{3}+\mathrm{NO}_{2} \rightarrow 2 \mathrm{O}_{2}+\mathrm{NO}$ rate-determining step $\mathrm{NO}+\mathrm{O}_{2}+\mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{5}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | b | Temperature, $T / \mathrm{K}$ Rate constant, $k / \mathrm{s}^{-1}$ $1 / \mathrm{T} / \mathrm{K}^{-1}$ $\ln k$ <br> 278    <br> 290  $3.45 \times 10^{-3}$  <br> 298    <br> 308   -8.52 <br> 323    <br> two missing values: $\quad 3.45 \times 10^{-3}$ AND -8.52 <br> all points plotted correctly <br> AND <br> best straight line drawn through points <br> gradient $= \pm 1.36 \times 10^{4}$ <br> acceptable range: $1.30-1.40 \times 10^{4}$ <br> multiplication by 8.314 <br> AND <br> division by $10^{3}$ to give $E_{a}=(+) 113\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ | 4 |  <br> ALLOW mark for gradient if correct working shown within Ea calculation without gradient being calculated separately. <br> ALLOW ECF from value of gradient BUT <br> DO NOT ALLOW '-’ sign for $E_{a}$ |
|  |  | Total | 10 |  |
| 1 5 |  | FIRST CHECK THE ANSWER ON THE ANSWER LINE <br> IF answer $=0.163 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ OR $0.1632 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ $\mathrm{s}^{-1}$ award 4 marks <br> IF answer $=0.163$ OR 0.1632 with incorrect units award 3 marks <br> Order w.r.t. $\mathrm{IC} /=1$ and order w.r.t $\mathrm{H}_{2}=1$ (1) | 4 | If there is an alternative answer, check to see if there is any ECF credit possible using working below <br> both orders = 1 mark <br> correct rate equation or rearranged form = 1 mark |

### 5.1.1 How Fast

|  | $\begin{align*} & \text { rate }=k\left[I \mathrm{C} /\left[\mathrm{H}_{2}\right](1)\right. \\ & k=\frac{2.04 \times 10^{-2}}{0.250 \times 0.500}=0.163 \text { OR } 0.1632  \tag{1}\\ & \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}(1) \end{align*}$ |  | candidates may use experimental data from experiments 2 or 3 to calculate the rate constant <br> do not allow 0.16 |
| :---: | :---: | :---: | :---: |
|  | $\text { ii } \begin{aligned} & \text { rate }=k\left[I \mathrm{C} \\|\left[\mathrm{H}_{2}\right](\text { from (i) })\right. \\ & =0.163 \times 3 \times 10^{-3} \times 2 \times 10^{-3}=9.78 \times 10^{-7}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right. \\ & \left.\mathrm{s}^{-1}\right)(1) \end{aligned}$ | 1 | allow ecf from (i) <br> Note use of 0.1632 from (i) gives $9.79(2) \times 10^{-7}$ |
|  | Total | 5 |  |

